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Abstract-It has been discovered recently that the 6 x 6 elasticity matrix N for an anisotropic elastic
material under a two-dimensional deformation can be extraordinary degenerate, i.e., N can have
three identical pairs of complex conjugate eigenvalues but has only one pair of complex conjugate
eigenvector. The Stroh formalism and the modified formalism for a simple degenerate N available
in the literature need to be revised. What is more likely to happen in applications is that the matrix
N is almost extraordinary degenerate. In that case the orthonormalized eigenvectors can be very
large, causing certain numerical problems. We therefore present in this paper a modified formalism
that is applicable to the case when]'.; can be extraordinary degenerate or almost extraordinary
degenerate. Copyright :[j 1996 Elsevier Science Ltd.

I. INTRODUCTION

The sextic formalism of Stroh for anisotropic elasticity is based on the assumption that the
6 x 6 real matrix N is simple or semisimple so that the three pairs of complex conjugate
eigenvectors ~" span a six-dimensional space. When N is non-semisimple or degenerate, i.e.,
when the number of independent eigenvectors is less than three pairs, the Stroh formalism
does not apply. Ting and Hwu (1988) and Ting (1992) have introduced modified formalisms
that apply to a degenerate or almost degenerate N that has two pair of complex conjugate
eigenvectors. Isotropic material is an example. When there exists only one pair of complex
conjugate eigenvector, N is extraordinary degenerate. Since isotropic material is the most
degenerate material, in the physical sense, of all anisotropic materials, most researchers
believe that an extraordinary degenerate N does not exist. Recently Ting (1996) has proved
that an extraordinary degenerate N exists. Hence isotropic material is not the most degener­
ate material in the mathematical sense. For an extraordinary degenerate material, the Stroh
formalism and the modified formalism proposed by Ting and Hwu are not valid. The
difficulty occurs not only when N is extraordinary degenerate. When N is almost degenerate
it is shown in Ting and Hwu (1988) that the magnitude of an orthonormalized eigenvector
can be very large, and becomes infinite as N becomes degenerate. This may cause problems
in a numerical computation. We therefore present in this paper a modified formalism
that is valid regardless of whether N is extraordinary degenerate or almost extraordinary
degenerate.

2. THE SEXTIC FORMALISM OF STROH

In a Cartesian coordinate system Xi' the equations of equilibrium in terms of the
displacements Ui are

(1)

in which repeated indices imply summation, a comma stands for differentiation and C,lkl

are the elasticity constants with the symmetry property
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(2)

For two-dimensional deformations in which Uk (k = 1,2,3) depends on Xl and X2 only, a
general solution of (I) is

(3)

where fez) is an arbitrary function of z, and ak and p are determined by inserting (3) into
(1). In matrix notation we have

r(p)a = 0

in which

the superscript T denotes the transpose, and the 3 x 3 matrices Q, Rand T are given by

(4)

(5)

(6)

It can be shown that the six eigenvalues p, (a = 1,2, ... ,6) of (4) cannot be real if the strain
energy is positive (Eshelby et al., 1953). Thus p, consists of three pairs of complex conju­
gates, as do their associated eigenvectors a,. Without loss in generality we let

1m {p,} > 0, Pa+3 = Pa, a'+3 = ax, (a = 1,2,3) (7)

where 1m stands for the imaginary part and the overbar denotes the complex conjugate.
The general solution for the displacement vector u obtained by superposing six solutions
of the form (3) can be written as

3

U = L [a,[,(z,)+aJ'_3(Za)]
::1:=1

in which[,(z,) are arbitrary functions of their argument and

Since u must be real, we let

Introducing the vector b by

I
b = (RT +pT)a = - -(Q+pR)a

p

where the second equality comes from (4), and letting

3

¢ = L [bJ,(z,) +bJ,(z')]'
,1;=1

the stresses (Jij obtained from

(8)

(9)

(10)

(11 )

(12)
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can be written as

Equations (II) I and (II h can be rewritten in the standard eigenrelation as

N~ = p~,
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(13)

(14)

(15)

(16)

Thus ~ is a right eigenvector of the 6 x 6 real matrix N. The left eigenvector" satisfies

Introducing the 6 x 6 matrix J by

J = [~ ~J

where I is the 3 x 3 identity matrix, it can be shown that

(18)

(19)

(20)

From (15), (18) and (20) we may assume without loss in generality (Chadwick and Smith
1977)

(21)

When N is simple or semisimple, ~" spans a six-dimensional space and is orthogonal to "a'
Thus we may normalize~" such that (with", determined from (21))

(22)

where <5,fl is the Kronecker delta. The orthonormal relations can be written in matrix
notation as

in which the 6 x 6 matrices U and V are

u = [~l' ~2'

V = ["1' "2'

Ifwe introduce the 3 x 3 matrices

(23)

(24)
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we may write U and Y as
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(25)

(26)

Equation (23) implies that y T and U are the inverses of each other and their product
can be interchanged. Carrying out the matrix multiplication of the interchanged product
leads to

AAT+AAT
= 0 = BBT+BBT,}

BAT +BAT = I = ABT+AiF.
(27)

These are the closure relations. Equation (27) tell us that the three Barnett-Lothe tensors
S, H, L, defined by

(28)

are real. Clearly Hand L are symmetric, and can be shown to be positive definite if the
strain energy is positive (Chadwick and Smith, 1977). The three Barnett-Lothe tensors play
important roles in the problems of anisotropic elasticity and surface waves (see, e.g.,
Chadwick and Smith, 1977 ; Barnett and Lothe, 1973, 1974, 1975; Ting, 1986). They satisfy
the identity

HL-SS = I. (29)

The above formalism is valid ifN is simple or semisimple. When N is almost degenerate,
say PI andpz are almost equal as are ~I and ~z, Ting and Hwu (1988) have shown that the
orthonormalized eigenvectors ~] and ~z are very large and become infinite when N is
degenerate. To overcome this difficulty they proposed a modified formalism that applies to
N that is degenerate or almost degenerate.

When N is extraordinary degenerate, i.e., when PI = pz = P3 and ~] = ~z = ~3' neither
the Stroh formalism nor the modified formalism proposed by Ting and Hwu is valid. It has
been widely conjectured that an extraordinary degenerate material does not exist. Recently
Ting (1996) has shown that the conjecture is incorrect. In fact, the set of extraordinary
degenerate N is probably larger than the set of degenerate N, of which isotropic material is
a special case. In the following sections we present a modified formalism that applies to
extraordinary degenerate or almost extraordinary degenerate materials.

3. MODIFIED SEXTIC FORMALISM

In this section, we assume that Ph pz and P3 are either equal or almost equal, so are the
corresponding eigenvectors. From (15) let

(30)

in which ~~ need not be normalized. After subtracting (30)] from (30)z and dividing the
resulting equation by (P2~PI) we have



Formalism for anisotropic materials

Similarly, from (30)1 and (30h we obtain

Again, subtracting (31) from (32) we have
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(31)

(32)

Equations (30)], (31) and (33) give us a new system of equations

where

In (35h we have used the relation

For the left eigenvectors

similar analysis but in the reverse order for i = 3,2, 1 yields

where

(34)

(35)

(36)

(37)

(38)

(39)

(40)

Equations (35), (37) and (40) also give us
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(41)

(42)

Thus, in the modified formalism, we will use ~~ and '1~ instead of ~~ and '1~. They are
determined from (34) and (39). The vectors ~~ and '1~ are not employed, but their relations
with ~~ and '1~ as given by (41) and (42) will be useful in establishing certain identities.
Instead of solving (39) for '1~, they can be obtained from ~~. From (21) we have

'12 = J~2, (k = 1,2,3)

With the use of (40), (43) and (41) it can be shown that

(43)

or, in matrix form,

in which

(45)

o
I =yT. (46)

The eigenvectors ~~ and '1~ obtained from (34) and (39) are not unique. We will show
that one can obtain a set of vectors which are orthonormal. Let ~~ and;;~ be a solution and
let

(47)

where k" k2, k3, k;, k;, and k~ are complex constants to be determined. In matrix form we
have

(48)

in which

(49)

Insertion of (47) into (34) leads to the following relations

From (45) and (48) we have

(51)

With Y and K given by (46) and (49), it can be shown that
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[

k"3
KY = k;

k 3

which is symmetric. Hence

k'3
(52)

Thus (51) is simplified to

To have an orthonormal system we need

or, by (48) and (54),

This means that

From (49) we have

k; k;k; -k2k~

k] k 1k 2 k 1k 2k 3

k'
K- 1 0

3
=

k 2 k 2k 3

1
0 0 -

k 3

so that

k; (k 1 +k2) k;k; (k] k 2+k2k 3 +k3 k]) -k~k~(k 1 +k3 )

ki ki k~ kik~k~

(53)

(54)

(55)

(56)

(57)

(58)

o 0

Equation (57) can be written explicitly as

k;(k2+k3 )

k~k~
(59)

k j 2 = jrIT~'I' k 2
2 = ij;T~;, k 1

2 = ij;T~;, }

k; = -kTk~ij'l T~;/(k] +k2 ), k', = -k~k~ij; T~;/(k2 +k,),

k'~ = [-kik~k~ij'l T~; +k;k',(k]k2+k2k 3 +k,k 1)]/k~(kl +k3 ).

With the aid of (34) and (39) one can show that it is compatible with (50).

(60)
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When 15k "# 0, the orthogonality relations of ~~, ,,~ and (35) and (40) assure us that k,
exist and do not vanish. In (60) one can always choose the signs of k, so that (k,+k ri ) "# O.
Hence k;, k; and k~ also exist.

When 15k = 0, (60) can be written with the aid of (50) as

(61 )

The existence of a set of orthonormalized eigenvectors is assured by the theory of non­
semisimple matrices (Pease, 1965).

4. EIGENRELATIONS FOR a~ AND b~

The Stroh eigenrelation was in fact based on the earlier version, (4) and (11) proposed
by Eshelby et at. (1953). Thus instead of finding the 6-vector ~ from (15) one could find
the 3-vectors a and b from (4) and (11). This may have some advantages in a numerical
calculation because each equation in (4) and (II) consists of three, not six, scalar equations.
To modify (4) and (11), we follow the derivation of (34). We obtain

r(Pl)a'l = 0, }

r(P2)a; = -[(R+RT)+(PI +P2)T]a;,

r(P3)a; = -[(R+RT)+(P3+p2)T]a;-Ta'I'

As to the modification of (11), we have

(62)

b'l = (RT+Pl T)a'i = - (;1 Q+R)a'I'

b; = (RT+P2T)a;+Ta; = -(~Q+R)a;+_I-Qa'b (63)
P2 PIP2

b; = (RT+P3 T)a;+Ta; = _(~Q+R)a;+_l_Qa;__l_Qa'I'
P3 P2P3 PIP2P3

Equations (62) and (63) provide a~ and b~ which form the components of ~~. One then
finds,,~ from (45) and orthonormalize the eigenvectors as outlined in Section 3. With (63),
(62) can be rewritten as

(64)

Therefore we may employ (64) and (63) instead of (62) and (63).

5. THE BARNETT-LaTHE TENSORS

With orthonormalized ~~ and ,,~ we have

(65)

in which
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U:: [~:1'~~'~:1'::1':~'::],}
V - ['11,112,'13,'11,112,'13]'

If we introduce the 3 x 3 matrices

and use (45), we have

U' = lA' ~'J, v' = lB'Y ~'!J.
B' B' A'Y A'Y

Carrying out the matrix multiplications in (65h leads to

A'YA,T +A'VA'T = 0 = B'YB,T +B'VB/T
,}

B'YA'T + B'VA'T = I = A'YB,T + A'VB'T.
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(66)

(67)

(68)

(69)

These are modified closure relations for (27). Since (27) leads to (28), one may assume that
the three Barnett-Lathe tensors S, Hand L have the form

H = 2iA'YA'T, L = - 2iB'YB,T, S = i(2A/YB'T - I). (70)

We will prove it in the following. It should be pointed out that in the special case
PI = P2 = P3' (70h reduces to the one established by Barnett (1992).

When N is simple, Lothe and Barnett (1976) have shown that

in which

lAI

<N)U' = i
B'

~~'J
-8'

(71)

<N) = l S HJ.
-L ST

(72)

The identity remains valid for an extraordinary degenerate N (Wang, 1996). If we post­
multiply both sides of (71) by V'T and use (65h and (72), it leads to eqns (70).

If (70) hold for any 0b comparison with (28) suggests that the following conversion
relations hold

(73)

To prove it, we will derive the relations between ~~ and ~,. Since the un-normalized
eigenvectors ~~ are scalar multiples of ~"' we let

(74)

in which ex, f3 and 'I are constants to be determined. Obviously, from (21), we also have

(75)

From (35) and (40) we have
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(76)

U sing the orthonormal relations of ~"' 'l. and ~~, 'l~ it is easy to find that

From the identity in (37) we also have

Hence we have from (76)

(77)

(78)

It tells us that

A' = AE, B' = BE,

where

(80)

" -1U2(X

(81 )

By a direct calculation it can be shown that

EYET = I. (82)

Equations (80) and (82) lead to the identities in (73). Therefore, (70) hold for any 15k . It is
also useful to know that

[

(X~- 1

E 1 = YET =
,,--I ]

_I" ,,-1
U21 .

}'

(83)

6. CONVERSION FROM THE STROH FORMALISM TO THE MODIFIED FORMALISM

With (73) and (80) one can convert relations which are valid for the Stroh formalism
to relations for the modified formalism. For instance, the impedance tensor M is defined
as (Ingebrigsten and Tonning, 1969; Chadwick and Ting, 1987)

(84)

or

(85)

where, by (48),
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A' = A'K, B' = B'K.
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(86)

Equation (85) is one of the few relations for which the conversion is achieved by a simple
replacement of A, B by A', B' or A', B'. Similarly, we also have

M I =iAB" I =iA'B'-1 =iA'B'-1 =L-1-iSL- I . (87)

Equations (85) and (87) tell us that we may use the un-orthonormalized k, B' in computing
the impedence tensor M and its inverse M -1.

In most applications!, in (8) and (12) assume the same function which can be written
as

f~(z,) = qJ(z,) (x not summed) (88)

where q, are complex constants. Equations (8) and (12) can then be written in matrix form
as

u = 2 Re {A<.f(z*)q}, cjJ = 2 Re {B<!(z*)q},

in which

and

is a diagonal matrix. For the modified formalism, let

We may write u and cjJ as

u = 2 Re {A'Fq'}, cjJ = 2 Re {B'Fq'},

where

Carrying out the matrix product in (93) leads to

(89)

(90)

(91)

(92)

(93)

in which

[

!(Zd

F= 0

o

XJ'(Z2)

!(Z2)

o
(94)
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(95)

In the limitp3 = P2 = PbF(z) andf"(z) in (95) are the first and second derivatives of[(z),
respectively. By carrying out the matrix product it can be shown that

KF = FK.

Thus, with the aid of (86), we may rewrite (92) as

u = 2 Re {A'Fq'}, c/J = 2 Re {B'Fq'},

where

q' = Kq'.

(96)

(97)

(98)

This means that u, c/J is unique regardless of whether we use the orthonormalized A', B' or
the un-orthonormalized A', B'.

7. CONCLUDING REMARKS

The modified sextic formalism presented here applies to any matrix N which is almost
extraordinary degenerate or extraordinary degenerate. The (jk in the analysis need not be
small. Hence it applies also to a simple N. However, it cannot be applied to a semisimple
or degenerate N. Instead of the integral formalism (Barrett and Lothe, 1973), (70) offers
an algebraic formalism for obtaining the Barnett-Lothe tensors H, Land S for an extra­
ordinary degenerate N. Another alternate is to employ (85) or (87) in conjunction with the
identity (29). The alternate allows us to use the un-orthonormalized A' and B'. With (92)
or (97), if one knows the analytic solution for the material with a simple N, one can easily
convert it to the solution for the material with an extraordinary degenerate N.
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